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SUMMARY

This work deals with the relation between the numerical solutions of hyperbolic systems of conservation laws
and the associated entropy evolution. An analysis of the continuum problem by means of variational calculus
clearly emphasizes the consequences of the adopted reconstruction procedure on the induced entropy balance. A
methodology is proposed that allows for a posteriori local and global spurious entropy production estimates on
the basis of an additional equation representing a discrete approximation to the entropy inequality. The problem
of de®ning a consistent approximation of the numerical entropy ¯ux is also addressed in detail. Properly
designed numerical experiments support the analysis and contribute to providing a more comprehensive
evaluation of the numerical entropy dynamics. # 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this work we consider some relevant aspects of the numerical solution of the one-dimensional

Euler equations of gas dynamics

ut � f�u�x � 0 8�x; t� 2 R� �0; T �; �1a�
u�x; 0� � u0�x�; 8x 2 R; �1b�

where the k-column vectors u�x; t� (conservative variables) and f�u� (¯uxes) are given by

u �
r
rq

rE

0@ 1A; f�u� �
rq

rq2 � p

q�rE � p�

0@ 1A �2�

and r; q; p;E � e� q2=2 and e stand for density, velocity, pressure and total and internal energy per

unit mass respectively. Moreover, an ideal gas with constant speci®c heats (whose ratio is g) is
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considered so that pressure is related to e by the equation of state p � �gÿ 1�re.
The system of conservation laws (1a) can also be cast in the non-conservative form

ut � A�u�ux � 0; A�u� � fu; �3�
where A is the Jacobian matrix of f and its eigenvalues are real and distinct; hence equation (3) form a

strictly hyperbolic system. Owing to the non-linearity of the ¯ux function f�u�, the solutions of (1)

can develop discontinuities at a ®nite time t � t* in the form of shock waves and=or contact

discontinuities, even when the initial data are very smooth. It follows that for t > t*; u�x; t� is not a

classic solution of (1a) any longer and it is therefore necessary to introduce the concept of

generalized or weak solutions which satisfy (1) in the sense of distribution theory, i.e. the integral

conservative relations1�b

a

�u�x; t2� ÿ u�x; t1��dx�
�t2

t1

�f�u�b; t�� ÿ f�u�a; t���dt � 0; 8�a; b� 2 R; 8�t1; t2� 2 �0; T �: �4�

As a consequence, discontinuous weak solutions of (1) satisfy the Rankine±Hugoniot (R±H)

condition

f�uR� ÿ f�uL� � C�uR ÿ uL�; �5�
where C is the speed of propagation of the discontinuity and uL and uR are the left and right states of

the discontinuity.2

Such weak solutions are not uniquely determined by their initial data, so additional criteria are

required in order to select the unique physically relevant solution. One such selection principle is to

look for those solutions which satisfy a regularized problem, i.e. weak solutions u�x; t� are admissible

when

u�x; t� � lim
e!0

ue�x; t�; �6�

where ue�x; t� is the solution of

ue
t � f�ue�x � eue

xx; �7a�

ue�x; 0� � u0�x� �7b�
and e is a positive parameter (i.e. an arti®cial diffusivity coef®cient). Such limit solutions, which

should be stable under small perturbations of the initial data, can be characterized with the aid of a

mathematical entropy function U �u� as proposed by Lax.2 Here we consider systems of conservation

laws that are equipped with a non-empty set of entropy functions, i.e. functions which satisfy the

conditions

Uuu > 0; �8a�

�Uu�Tfu � �Gu�T; �8b�
where G � G�u� is the so-called entropy ¯ux (the superscript T stands for transpose). Multiplying (1a)

from the left by U T
u and accounting for (8b), it is easy to see that each smooth solution of (1a,b)

satis®es

U �u�t � G�u�x � 0: �9a�
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Likewise, the limit solution (6) satis®es in the weak sense the entropy condition (or entropy

inequality)

U �u�t � G�u�x 4 0: �9b�
Integrating (9b) over all rectangles �a; b� � �t1; t2� yields�b

a

�U �u�x; t2�� ÿ U �u�x; t1���dx�
�t2

t1

�G�u�b; t�� ÿ G�u�a; t���dt 4 0: �9c�

In fact, multiplying (7a) from the left by UT
u and again assuming (8b), we obtain

U �ue�t � �G�ue� ÿ e�U T
u ue

x��x � ÿe�ue
x�TUuuue

x; �10�
which shows that the mathematical entropy associated with the regularized solutions veri®es a

balance equation that presents both a diffusive ¯ux and a negative (owing to (8a)) production. It can

then be shown that the entropy inequality (9b) (or (9c)) follows from (10) in the limit of e! 0.

Therefore admissible discontinuities satisfy the entropy jump inequality

G�uR� ÿ G�uL�4C�U �uR� ÿ U �uL��: �11�
Inequalities (9b,c) and (11) can be used to rule out unphysical discontinuities. In the scalar case

�k � 1�, Lax2 has shown that they also ensure the uniqueness of the weak solutions of (1) in the range

of the admissible ones. These results are weaker for k > 1, even though they are valid in the small.

For a generic system of conservation laws there is no a priori guarantee of the existence of a

mathematical entropy function satisfying relations (8a,b). However, in the case of the smooth

solutions of the Euler equations it is well known that the speci®c thermodynamic entropy s � s�e; v�,
where v � 1=r is the speci®c volume, veri®es

st � qsx � 0 �12�
and use of the continuity equation

�rs�t � �rqs�x � 0; �13�
which shows that the quantity rs (entropy per unit volume) satis®es the condition (8b). In the

presence of discontinuities the second law of thermodynamics implies

st � qsx 5 0: �14�
Hence it is plausible to assume as a mathematical entropy function

U �u� � ÿr�Zÿ Z0�; �15a�
where Z � s=cv is the non-dimensional thermodynamic entropy, with cv the speci®c heat at constant

volume, and Z0 is a constant reference value. For an ideal gas, Z � log�p=rg�, thus yielding

U �u� � ÿu1 log
�gÿ 1��u3 ÿ 1

2
u2

2=u1�
u
g
1

 !
� u1Z0; �15b�

where ui are the components of the unknown vector u. This U �u� is a convex function of u and

satis®es (5).2±11 A more general entropy function can be de®ned by considering an arbitrary smooth

function s � s�s�. Left-multiplying (12) by ds=ds yields

st � qsx � 0; �16�
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whose conservative form is

�rs�t � �rqs�x � 0:

Therefore for the Euler equations of gas dynamics it is possible to de®ne a family of entropy

functions U �u� � ÿrs�Z�, under some constraints on s and its derivatives, in order to ensure the

convexity of U �u�.12 Thus expressions other than (15a) may be used for U.

Despite the mathematical and physical evidence of the entropy inequalities that must be satis®ed

by the admissible weak solutions, it is not easy to verify such inequalities at a discrete level. In this

study we deal with the problem of evaluating the consistency of numerical solutions of the Euler

equations with the entropy inequalities. More precisely, we aim to devise a methodology which, on

the basis of an additional induced equation representing a discrete approximation of the entropy

balance, would allow for an a posteriori local and global spurious entropy production estimate. The

analysis is supported by analytical and numerical considerations and contributes to providing a more

comprehensive evaluation of the numerical entropy dynamics. The motivations for this study stem

from analogous research carried out by Tadmor11 and, in a computational framework, by Cox and

Argrow,13 with which it shares some similarities.

The outline of the paper is as follows. In the ®rst part an analysis of the relation between the

entropy balance and the reconstruction of a ®nite-dimensional state vector is carried out by means of

variational calculus. A discrete level analysis follows and the results for systems of conservation laws

are given. Next the problem of de®ning a suitable numerical entropy ¯ux is addressed and local and

global entropy balances consistent with the underlying numerical schemes are introduced. Some test

problems are devised in order to assess the effects of the order of accuracy of ®nite volume time-

marching algorithms upon the entropy production.

2. NUMERICAL PRELIMINARIES

The computational approach to the continuum problem requires some preliminary choices for the

®nite-dimensional representation of the unknown functions and the discretization of the equations.

The aim of the discretization is to replace the functional requirements expressed by equations (1)

and (2) (sometimes also accounting for (9c)) by a set of algebraic relations for the fully discretized

approach or by a system of ordinary differential equations for the semidiscretized approach. In both

cases the numerical solution is represented by a ®nite set of real parameters, the so-called state vector

fvn
j g (here the indices j and n refer to the spatial and temporal discretizations respectively). The

meaning of the scalar components of fvn
j g depends on the adopted representation and also constitutes

a distinguishing feature of the various computational methods. These components can be de®ned in

general by means of the theory of projections onto suitable basis functions. More commonly,

however, the unknowns vn
j are de®ned as either pointwise values or cell averages or even as real

coef®cients of the chosen shape functions. It is worth noticing that a functional space and=or space±

time description of the quantities associated with the state vectors may be useful even in cases where

the description itself is not strictly linked to the representation, as in ®nite difference or ®nite volume

methods. For these methods it may be necessary to associate some interpolation or reconstruction

(either local or global) of the state vector with the representation and discretization procedures.

The design of a time-marching ®nite volume discretization consistent with the conservation law

(1a) essentially requires

(i) the selection of a ®nite-dimensional state, e.g. state vector of nodal values, state vector of

values averaged over computational cells, etc.
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(ii) the selection of ®nite-dimensional ¯ux vectors, i.e. approximation of the temporal integration

of f�u� over the time step at the cell boundaries

(iii) the analysis of the in¯uence of the spatial and temporal discretizations on stability, accuracy

and physical relevance of the numerical solutions (i.e. consistency with the entropy inequality

(9c)).

Items (i) and (ii) have been widely addressed in the literature (nevertheless, some issues related to

(ii) will be brie¯y recalled in a later section). With regard to (iii) we recall that the most successful

methods for computing discontinuous solutions are those derived from a conservative and consistent

®nite volume formulation. This is a consequence of the Lax±Wendroff theorem,14 which shows that,

by using conservative difference schemes and consistent numerical ¯uxes, the numerical solution

converges boundedly almost everywhere. Furthermore, its limit is a weak solution of (1) and satis®es

automatically the jump conditions across discontinuities. However, the Lax±Wendroff theorem does

not guarantee that the obtained numerical approximation will always converge to the physically

relevant weak solution, i.e. it may not satisfy the entropy condition. Equations such as (9c) are not

usually included in the discretization, although the numerical solution should eventually satisfy the

entropy condition.

Over the last two decades many efforts have been devoted to the construction of numerical

schemes which possess some special stability properties such as monotonicity, l1-contractivity, total

variation diminishing (TVD)15 and total variation bounded (TVB)8 requirements. Although of

extreme importance with respect to the convergence towards a weak solution of a conservative

scheme, these properties do not always ensure consistency with the entropy inequality (9c). We

remark that many popular schemes do not satisfy the entropy condition unless an entropy correction

is introduced. Among these is the popular approximate Riemann solver (ARS) of Roe,6 which admits

expansion shocks as steady solutions.

Furthermore, it is dif®cult to simultaneously provide accurate and physically relevant solutions

owing to the limitations dictated by the Godunov theorem (and its Harten±Key®tz extension for non-

linear equations).16 The only attempts (of which the authors are aware) at designing entropy-satisfying

schemes are due to Osher5 and Tadmor10 and these (implicitly) satisfy the entropy inequality only in

an approximate sense. In particular, for the scalar case, Osher has introduced the E-schemes which

are shown to be TVD and entropy-satisfying, thus converging to a physically relevant solution.

Unfortunately, such an E-consistency requirement restricts the approximation to ®rst-order accuracy.

Tadmor has generalized this idea by introducing the entropy conservative scheme which satisfy a

discrete cell entropy equality. He has shown that those conservative schemes that have more viscosity

than an entropy conservative scheme are also entropy stable.10 It is obvious that the E-schemes

introduced by Osher fall within this category by comparison with the Godunov scheme which is

known to satisfy the entropy inequality.

We therefore conclude that the design of a numerical scheme capable of simultaneously providing

accurate and physically relevant solutions is not an easy task. Hence the increasing demand for a

wider and more detailed analysis of the relation between the state vector fvn
j g obtained from any ®nite

volume discretization procedure and the entropy inequality (9c) appears justi®ed.

3. THE ENTROPY RECONSTRUCTION RELATION

In the design of modern time-marching ®nite volume algorithms it is possible to distinguish a

projection or reconstruction stage and an evolution stage. The ®rst step consists of a local or global

continuous space description of the approximate solution at a given time by means of a ®nite-

dimensional state vector. In the evolution stage the reconstruction allows the evaluation of the
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numerical ¯uxes required to upgrade the state vector at the next time level. Obviously the global

reconstruction of the unknown quantities also allows for the reconstruction of other dependent

variables such as the entropy and therefore provides the possibility of estimating the entropy

evolution at various time levels. We remark that in principle the reconstruction process contains an

unlimited number of degrees of freedom. In the following we intend to study the relation between the

choice of reconstruction stage and the related entropy production.

For the sake of simplicity we refer to the scalar case and let D � �a; b� be a ®nite interval of R and

U: R! R a twice continuously differentiable function, i.e. U 2 C2�R�, and convex with respect to

w, i.e. Uww > 0. Consider the differentiable functional

F : w 2 C0� �D� !
�

D

U �w�x��dx:

The following proposition holds.

Proposition 1

The functional F�w� admits an extremum if and only if U �w� has an extremum.

Proof. Suppose that*

9w0 2 R : dU �w0�=dw � 0:

Then F�w� has a relative extremum at the extremal function** w�x� � we�x� � w0� constant. In

addition, owing to its convexity and to the consequent strictly monotone behaviour of its ®rst

derivative, U has a unique minimum value at the point w0. As a consequence of this, F has the unique

minimum value at the point we�x�. On the other hand, if U does not have an extremal value w0, then F
does not have an extremum either. In conclusion, if U has (resp. does not have) lower or upper

bounds, then F has (resp. does not have) lower or upper bounds as well. u

The above reasoning also applies when U is a convex function of a vector-valued function w�x�. In

this case it is again easy to prove that F�w� has a minimum at w0 if and only if w0 is an extremal point

for U �w�. Likewise, the boundedness (or unboundedness) of U �w� corresponds to the boundedness

(or unboundedness) of F.

Let the set fIigi2f1;...;Ng constitute a partition of D and let SD be the space of piecewise continuous

functions*** over D. Here the subintervals Ii � �xiÿ1=2; xi�1=2� have size hi, with x1=2 � a and

xN�1=2 � b. In order to understand the features of some numerical schemes for conservation laws, we

* If F has a relative extremum at the point w, then�
D

dU �w�
dw

v dx � 0; 8v 2 C0� �D�:

Hence

dU �w�=dw � 0;

which is the Euler equation of the functional F.
** An extremal function (or extremal point) is a function which makes a given functional stationary.
*** We say that a function w�x� is piecewise continuous over a given interval if the interval can be divided into a ®nite number
of subintervals, within which w is continuous, with ®nite limits at the left and right endpoints, and

SD � fw : w�x� � wi�x�;8x 2 Ii; and wi 2 C0��xiÿ1=2; xi�1=2��; 8Iig:
If, in addition, w�x� is continuously differentiable over each closed subinterval, then we say that it is piecewise smooth.
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attempt to analyse the consequence of adopting either an interpolation or a reconstruction procedure

of the unknown by extending the continuum level analysis. We ®rst assume that w is a scalar function

which obeys some conditions, i.e. w belongs either to the set of piecewise continuous interpolations

TD � fw 2 SD :w�xi� � wi; 8Iig
or to the set of piecewise continuous reconstructions

VD � w 2 SD :
1

hi

�hi=2

ÿhi=2

w�xi � Z�dZ � �wi; 8Ii

( )
;

where xi is the centre of Ii. Note that the sets TD and VD are typical of ®nite difference and ®nite

volume schemes respectively.

Let U � U �w� 2 C2 be a convex function with an extremum. From Proposition 1 the following

proposition immediately ensues.

Proposition 2

The functional

F : w 2 TD !
PN
i�1

�
Ii

U �w�x��dx

does not admit any extrema, with the trivial exception of the case wi � w0.

The situation is different in the case of reconstruction, as illustrated by the following proposition.

Proposition 3

Let w � w�x� 2 VD and p � p�x� be the primitive function of w�x�:

p�x� �
�x

a

w�x�dx; x 2 �a; b�: �17�

Then the functional

F : p!PN
i�1

�
Ii

U �p0�x��dx

has a minimum.

Proof. To prove the proposition, we again use the variational calculus. We start by noticing that

from (17) it immediately follows that

p�xi�1=2� ÿ p�xiÿ1=2� � hi �wi; �18�

p�xi�1=2� �
Pi

k�1

hk �wk : �19�

As a consequence, the values of the primitive function p�x� are constrained at all cell interfaces xi�1=2

by (19). The necessary condition for a constrained relative extremum of F then reduces to (the Euler

equation)

d

dx

dU

dp0

� �
� 0 , d2U

dp02
p00 � 0; 8Ii:
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Let p0 be an extremal function for F. It then follows that

p000 � 0 ) p0 � aix� bi; �20�
Up0p0 being a positive quantity. The coef®cients ai and bi are easily obtained through (18), thus giving

the piecewise linear function

p0�x� � �wi�xÿ xiÿ1=2� � p0�xiÿ1=2�; 8x 2 �xiÿ1=2; xi�1=2�; �21�
which implies

we�x� � �wi; 8x 2 �xiÿ1=2; xi�1=2�:
Moreover, owing to the convexity of U, F has a minimum at p0. u

The previous analysis can be extended to the case in which U: Rk ! R. Again a vector function

p�x�, whose components are the primitives of the corresponding components of the vector w�x�, can

be introduced. Similarly to the scalar case, the following Euler equation holds:

�p00�T � Up0p0 � 0; 8Ii: �22�
Let p0 be an extremal point for F�p�. Then, being the Hessian Up0p0 a symmetric positive de®nite

matrix, equation (22) implies p000 � 0 on each subinterval Ii. Hence each component of p0 is a

piecewise linear function as given by (20) and (21) and also in this case F has a minimum at p0.

It is useful to recognize here an immediate consequence for the gas dynamics equations; namely, in

the case of a single interval I1 � D the distribution of the variables u which ensures the minimum of

F�u� (maximum of the global thermodynamic entropy), under the condition of conservation of the

integral of mass, momentum and energy, is the constant one.

The signi®cance of the above considerations towards the understanding of the ®nite volume

reconstruction procedure as a source of spurious entropy production will be further clari®ed in

Section 5.

4. THE FULLY DISCRETIZED FINITE VOLUME FORMULATION

Hereafter we concentrate on the numerical solution of (1) obtained by two-level fully explicit

schemes in conservative form. For the sake of simplicity we consider a uniform partition of D and

denote by h and t the mesh size and the time step respectively. Let xi�1=2 � �i� 1
2
�h and

tn � nt; 8n5 0, and i 2 f1; . . . ;Ng. The fully discretized ®nite volume formulation of (1) is

vn�1
i ÿ vn

i � ÿ
t
h
�f̂i�1=2 ÿ f̂iÿ1=2�: �23�

Here f̂i�1=2 is the approximation of the true ¯ux at cell face xi�1=2, based on a support of 2m values,

averaged between tn and tn�1,

f̂i�1=2 � f̂�vn
iÿm�1; . . . ; vn

i�m� � f̂�xi�1=2; t; u� � 1

t

�t
0

f�u�xi�1=2; t � x��dx; �24�

which satis®es the consistency requirement

f̂�u; . . . ; u� � f�u�; �25�
and vn

i is an approximation to the average of the exact solution u�x; t� in cell I i,

vn
i � �un

i �
1

h

�h=2

ÿh=2

u�xi � Z; tn�dZ: �26�
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One of the earliest approaches to evaluating the numerical ¯ux function is due to Godunov.17 We

recall that in the Godunov method the fundamental properties of the local exact solution of the

conservation laws are accounted for in the discretization procedure. More precisely, the cell averages

are advanced in time by solving at each time step a Riemann problem at each cell interface, assuming

a piecewise constant reconstruction. For suf®ciently small CFL number there are no interactions

between the different Riemann problems and a solution w�x; t� is obtained, 8x 2 I i; 04 t 4t. The

approximation at time level tn�1 � tn � t can then be written in the conservation form (23) with the

numerical ¯ux given by

f̂God
i�1=2 � f̂�vn

i ; vn
i�1� � f�w�0�; vn

i ; vn
i�1��; �27�

where w�x; t� � w��xÿ xi�1=2�=�t ÿ tn�; vn
i ; vn

i�1� is the exact self-similar solution of the Riemann

problem at cell interface xi�1=2 at time tn. We observe that the only source of error in the Godunov

scheme arises from the averaging of the unknowns over a computational cell when assuming a

piecewise constant state representation.

In recent years a class of schemes which share some similarities with the method of Godunov has

been developed. These schemes, usually referred to as `upwind' difference schemes, take into

account the essential physical properties of the hyperbolic conservation laws. Upwind schemes have

been cast in a general form after Harten et al.,1 according to the conservative discretization (23). We

brie¯y recall the class of upwind schemes based on (conservative) ¯ux vector splitting, which

consists of decomposing the ¯ux f in the form

f�u� � f��u� � fÿ�u�;
where f� � A��u�u and A��u� are such that A � A� � Aÿ and �A��u� have real and non-negative

eigenvalues. The resulting numerical ¯ux function is

f̂i�1=2 � f̂�vi; vi�1� � f��vi� � fÿ�vi�1�:
In a general ®nite volume scheme the numerical ¯ux function f̂i�1=2, evaluated by introducing a

local (not necessarily constant) reconstruction of the averaged cell values, is followed by a time

integration. Consequently, the numerical ¯ux can be recast as

f̂i�1=2 � f̂�Rn
i �xi�1=2�;Rn

i�1�xi�1=2��; �28�
where Rn

i �x� and Rn
i�1�x� are the vector-valued reconstructions of the state vector within cells Ii and

Ii�1 respectively. The components of Ri�x� are obtained by using a polynomial function of degree

r ÿ 1 (yielding a conservative rth-order-accurate approximation in the sense of Harten15) and the

global approximation of u�x� is obviously a piecewise polynomial function. In most instances the ¯ux

function is approximated by

fR�Rn
i �xi�1=2�;Rn

i�1�xi�1=2��; �29�
where fR�a; b� denotes the ¯ux at xi�1=2 associated with an approximate solution of the Riemann

problem whose initial states are (a, b). Here it must be emphasized that irrespective of the type of

numerical ¯ux function employed, the accuracy and main properties of (23) are dictated by the

reconstruction procedure.

In the present work we analyse schemes whose design relies on either a second- or a third-order

reconstruction procedure, of which we give a brief description hereafter. The conservative

reconstruction is obtained by means of Legendre polynomials and we apply the reconstruction in a

component-wise fashion, i.e. we assign to each component of the vector of unknowns an independent

stencil according to an essentially non-oscillatory (ENO) approach.18,19 From the given local cell
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average vector of the conserved variables vi � � �r; rq; rE�Ti we approximate the cell averages of the

primitive variables � �r; �q; �p�Ti through

�qi �
�rq�i

�ri

; �pi � �gÿ 1� �rE�i ÿ
�ri �q

2
i

2

� �
:

The generic primitive variable f is then reconstructed either by

fi�x� � �fi � f a
i �xÿ xi�; 8x 2 Ii;

or by

fi�x� � �fi � f a
i �xÿ xi� � 1

2
f b
i ��xÿ xi�2 ÿ h2=12�; 8x 2 Ii;

in the case of piecewise linear (r � 2) and quadratic (r � 3) reconstructions respectively. The

quantities f a
i in the linear reconstruction are obtained by imposing

1

h

�
Ij

fi�x�dx � �fj;

while in the quadratic case f a
i and f b

i follow by requiring

1

h

�
Ij

fi�x�dx � �fj and
1

h

�
Ik

fi�x�dx � �fk;

where the indices j and k are selected via an ENO stencil selection procedure.18,19

5. GLOBAL AND LOCAL ENTROPY VERIFICATION

Before turning to the issue of de®ning the discrete counterpart of an entropy inequality, we wish to

recall some de®nitions and results related to the locally induced entropy balance. Following

Reference 16, the admissibility criterion for the exact weak solution of (1) is expressed in terms of an

inequality such as (9c). The scheme (23) is said to be entropy stable if the following cell entropy

inequality holds:

Un�1
i ÿ Un

i �
t
h
�Ĝi�1=2 ÿ Ĝiÿ1=2�4 0; �30�

where U k
i and Ĝi�1=2 are the approximations

Uk
i �

1

h

�h=2

ÿh=2

U �u�xi � x; tk��dx; �31�

Ĝi�1=2 � Ĝ�xi�1=2; t; u� � 1

t

�t
0

G�u�xi�1=2; t � x��dx: �32�

Note that although in some instances (e.g. the Euler equations of gas dynamics) an entropy ¯ux

function G�u� can be identi®ed at least for the analytical problem (1), at the discrete level (24) and

(25) do not provide any guideline to de®ne Ĝi�1=2. In practice, for each entropy function U the

existence of a numerical entropy ¯ux (function of 2m arguments)

Ĝi�1=2 � Ĝ�vn
iÿm�1; . . . ; vn

i�m� �33�
which is consistent with the differential one

Ĝ�u; . . . ; u� � G�u� �34�
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does not follow in a natural way from the chosen f̂ but must in some sense be postulated. This is a

crucial point; indeed, when the schemes are not designed such that they naturally obey a discrete cell

entropy inequality, the only alternative route is to carry out an a posteriori analysis of the numerical

solutions.

Therefore, in order to verify the consistency of a numerical solution with (30), it is necessary to

evaluate both U k
i and Ĝi�1=2. While the former can be readily obtained via reconstruction by means of

(31), the latter opens the way to ambiguities, i.e. it is unclear how to de®ne a numerical entropy ¯ux

which is consistent with the numerical ¯ux functions f̂i�1=2. To show how one can overcome such a

dif®culty, we consider an initial value problem for (1a) in a ®nite interval D� [0, 1] subject to

periodic boundary conditions

u�0; t� � u�1; t�:
This is representative of a non-linear convection problem in an annular ring of unit length where the

curvature effects are neglected. Then a global analysis may be carried out by looking at the time

evolution of the quantity

UD�t� �
�

D

U �x; t�dx:

The periodicity of the boundary conditions ensures that the instantaneous net ¯ux of the conserved

variables in D is exactly zero. Integrating (10) over the region A � fx 2 D; 04 t 4 Tg, we ®nd�
D

U �ue�x; t��dxÿ
�

D

U �ue�x; 0��dx � ÿe
� �
A

�ue
x�TUuuue

x dx dt

and from the convexity of U we obtain the estimate�
D

U �u�x; t��dx4
�

D

U �u�x; 0��dx:

For the discrete level analysis let us introduce the cell (non-positive) space±time average (of the rate)

of entropy production pi and recast (30) in the form

U n�1
i ÿ Un

i �
t
h
�Ĝi�1=2 ÿ Ĝiÿ1=2� � tpi: �35�

If we then sum (35) over the N control volumes, we get a global discrete entropy inequality that does

not require any evaluation of the numerical entropy ¯ux, i.e.

PN
i�1

�Un�1
i ÿ U n

i � � t
PN
i�1

pi 4 0: �36�

The left-hand side of (36) can be used to evaluate the global entropy production associated with any

®nite volume scheme. One might conjecture that the veri®cation of (36) for any initial condition

would also allow for the determination of the (assumed non-positive) local cell entropy productions

pi. The non-linear character of the equations makes it dif®cult to prove such a conjecture and,

moreover, makes it impossible to consider a realistic exhaustive set of different initial conditions. As

a consequence, one has also to face the problem of verifying the local entropy condition (35).

For a local analysis we ®rst observe that if the time rate of change of the entropy function is known

in each cell (as in the periodic test problem discussed above), then (35) reduces to a system of N

equations in 2N unknowns: the entropy productions pi and the numerical entropy ¯uxes Ĝi�1=2.
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Therefore, if one could estimate the local entropy productions, one might attempt to determine the

numerical entropy ¯uxes from

Ĝi�1=2 ÿ Ĝiÿ1=2 � h pi ÿ
Un�1

i ÿ U n
i

t

� �
; i � 1; . . . ;N ; �37�

which is a linear system of N equations in the N unknowns Ĝi�1=2 that does not admit a unique

solution, since each row is a linear combination of all the others. This is not a surprising result owing

to the periodic character of the problem �v1 � vN�1 and Ĝ1=2 � ĜN�1=2�. Nevertheless, setting for

instance ĜN�1=2 � 0 and eliminating the Nth equation, it is easy to see that (37) has the solution

Ĝi�1=2 � h
Pi

k�1

pk ÿ
Un�1

k ÿ U n
k

t

� �
; i � 1; . . . ;N ÿ 1; �38�

which shows the cumulative effect of the errors on the local estimates of Ĝi�1=2. Hence a reliable

evaluation of the numerical entropy ¯uxes would be possible if an accurate approximation of the

numerical entropy productions were available. The complexity of the numerical entropy production

mechanism (due to the presence of discontinuities, the reconstruction procedure, etc.) makes it

dif®cult to ®nd a suitable distribution of the entropy production.

On the contrary, it seems more reasonable to ®nd a consistent approximation to Ĝi�1=2 and then

determine the local entropy productions pi. We recall that for the Euler equations of gas dynamics a

unique solution of the Riemann problem exists as long as a vacuum does not form. Such an exact

solution w�x; t� satis®es the entropy condition (9b):�h=2

ÿh=2

U �w�xi � Z; tn�1��dZ4 hU �vn
i � ÿ t�G�w�0�; vn

i ; vn
i�1�� ÿ G�w�0�; vn

iÿ1; vin���:

We then note that when the Godunov scheme is used, the entropy ¯ux

ĜGod
i�1=2 � G�w�0�; vn

i ; vn
i�1�� �39�

is evaluated exactly. Furthermore, as previously shown, the piecewise constant representation of the

data implies that the following inequality is satis®ed:

hU � �wi�4
�h=2

ÿh=2

U �w�xi � Z��dZ;

which yields the obvious consequence that the Godunov scheme veri®es the entropy inequality (30).

From the foregoing we can conclude that the Godunov scheme allows us to safely estimate the

local entropy productions pi; however, a more general procedure that does not rely on the use of an

exact Riemann solver is desirable. In the following we therefore address the issue of de®ning a

suitable approximation of the entropy ¯ux function. A possibility might consist of assuming

Ĝi�1=2 � G�u*�; �40�
with u* the state vector such that

f�u*� � f̂i�1=2: �41�
However, (41) does not admit in general a unique solution: the Rankine±Hugoniot relations for a

steady shock discontinuity provide an example of two different states (and two values of G)

836 F. GRASSO ET AL.

INT. J. NUMER. METH. FLUIDS, VOL. 25: 825±845 (1997) # 1997 John Wiley & Sons, Ltd.



corresponding to a unique ¯ux vector f. To ®nd an expression for the numerical entropy ¯ux function,

we reason that one could exploit the homogeneity property of Euler ¯uxes. Indeed, we have

G�u� � ÿZ�u�f 1�u� � f 1�ÿZ�u�u�; �42�
where f 1 is the mass ¯ux (i.e. the ®rst component of the ¯ux function f). A numerical entropy ¯ux

function, hereafter referred to as the mass consistent entropy ¯ux (MCEF), can then be devised

according to

Ĝi�1=2 � Ĝ�vi; vi�1� � f̂ 1�ÿZ�vi�vi;ÿZ�vi�1�vi�1� �43a�
for a low-order scheme and

Ĝi�1=2 � f̂ 1�ÿZ�Ri�xi�1=2��Ri�xi�1=2�;ÿZ�Ri�1�xi�1=2��Ri�1�xi�1=2�� �43b�
for a high-order method. Equations (43a,b) provide consistent numerical approximations to the

entropy ¯ux; besides, they do not require any linearization procedure while employing the same

numerical mass ¯ux as the baseline scheme.

Finally, we can also introduce the quantity

dconst
i � U � �wn�1

i � ÿ
1

h

�h=2

ÿh=2

U �w�xi � Z; tn�1��dZ4 0;

which represents a spurious cell entropy production due to a piecewise constant representation of the

data (note that all ®rst-order ®nite volume schemes suffer from such a contribution). According to

Proposition 3 discussed in Section 3, we claim that any other functional representation of the

unknowns within the cell will lead to a di 5dconst
i , which of course implies that the reconstruction

contribution to the term tpi can be either negative (source of entropy) or positive (sink of entropy).

6. NUMERICAL EXPERIMENTS

In the previous sections we have shown that a thorough analysis of a ®nite volume scheme would also

require the study of the numerical entropy dynamics (and the relation between the entropy balance

and the reconstruction process) as well as the quanti®cation of the local entropy production. For that

purpose three initial value problems (IVPs) for the Euler equations of gas dynamics have been

selected.

Problem (a)

This corresponds to an IVP with discontinuous initial conditions in the density ®eld,

Problem �a� �ri � 0�125; qi � 1; pi � 1�; 14 i4N=2;
�ri � 1; qi � 1; pi � 1�; N=2 < i4N ;

�
and periodic boundary conditions. The unsteady exact solution of this problem consists of two

rotating constant states separated by two contact discontinuities. Problem (a) has ®rst been solved

using some well-known numerical ¯ux functions and adopting a piecewise constant reconstruction of

the data. In particular, we have analysed the exact Riemann solver of Godunov,17 the approximate

Riemann solvers of Osher4 and Roe,6 the ¯ux-vector-splitting methods of Steger and Warming9 and

van Leer,20 the Lax±Friedrichs method2 and the advection upstream splitting method3 (AUSM). All

the computations have been carried out using 100 cells �h � 0�01�; t � 10ÿ3 (CFL� 0�4) and the

forward Euler explicit time-differencing procedure.
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In Figure 1 we evaluate the performance of the different numerical schemes by reporting the ratio

f of the global thermodynamic entropy over its initial value versus time in the interval �0; T � (where

T� 1 is the time necessary for a ¯uid particle to travel over the entire ring). The discrete global

entropy at time tn is de®ned as

Un
D �

PN
j�1

�
Ij

rn
j �x�Zn

j �x�dx: �44�

In the ®gure we also report the exact value represented by the f� 1 line. As expected, the Godunov

method provides the best performance, i.e. is the time rate of change of f is the slowest. We also note

that both the Roe and Osher methods yield solutions that are virtually indistinguishable from the

Godunov one, while all other schemes prove to be more dissipative. The unavoidable smearing of the

two contact discontinuities leads to an increasing time-dependent spurious entropy production.

Indeed, while in a Lagrangian formulation a contact discontinuity can be crisply captured, this is

dif®cult to achieve with a Eulerian formulation without resorting to some special treatments such as

the subcell resolution proposed in Reference 21.

Next we discuss the effects of the order of the reconstruction for a given ¯ux function. In

particular, we consider the constant, linear and quadratic ENO reconstruction procedures described in

Section 4, adopting the exact Riemann solver of Godunov. All computations have been carried out

using the same time step, number of cells and time integration procedure as before. In Figure 2 the

numerical and exact solutions are compared after 100 time steps. As expected, a substantial

improvement is observed with the quadratic reconstruction. In Figure 3 we again report the variation

in f with respect to time. For the higher-order reconstruction the integral in (44) is carried out

relating each interval Ij with the reference interval C � �ÿ1; 1� through the transformation

x � 1
2
��xj�1=2 � xjÿ1=2� � a�xj�1=2 ÿ xjÿ1=2��; a 2 �ÿ1; 1�:

Figure 1. Time history of global entropy variable for various ¯ux functions; test problem (a)
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Thus the integral of a generic function f �x� on Ij is computed as�
Ij

f �x�dx � hj

2

�
C

f �x�a��da:

In the above expression the integration over C is done numerically using a two-point Gauss±Legendre

quadrature formula* �
Ij

f �x�dx � hj

2
�f �x�a1�� � f �x�a2���; a1 � ÿa2 � ÿ

1p
3
: �45�

Figure 2. Time history of global entropy variable for various reconstruction procedures; test problem (a)

Figure 3. Exact and computed density distributions at time T � 1: test problem (a)

* The quadrature (45) is exact when the function f is a polynomial of degree less than or equal to three.
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Recalling that the exact entropy production is zero for this test problem, it appears that the time rate

of change of the spurious entropy production is drastically reduced with the order of reconstruction.

Problem (b)

To get some indications on the local entropy balance and its relation with the numerical solutions,

we have considered two well-known test cases for the Euler equations of gas dynamics, i.e. the Sod7

and Lax15 problems, hereafter referred to as problems (b1) and (b2), which are de®ned by the

following initial conditions:

problem �b1� �ri � 1; qi � 0; pi � 1�; 14 i4N=2;
�ri � 0�125; qi � 0; pi � 0�1�; N=2 < i4N ;

�

problem �b2� �ri � 0�445; qi � 0�698; pi � 3�528�; 14 i4N=2;
�ri � 0�5; qi � 0; pi � 0�571�; N=2 < i4N :

�
The exact solution of problem (b1) consists of a discontinuity which breaks into a weak shock

wave followed by a contact discontinuity and a rarefaction wave. In problem (b2) the initial

discontinuity breaks into a moderately strong shock followed by a density level far above its initial

state. The contact discontinuity then lowers the density, which undergoes a transition to the left initial

state through a rarefaction wave. Because of the monotone time-decreasing density pro®le, the

numerical solution of problem (b1) does not exhibit the dif®culties associated with the creation of an

intermediate state (i.e. outside the bounds of the initial values), typical of problem (b2).

Following the methodology described in Section 4, we analyse the local entropy production and

the effects of the reconstruction. The computations have been carried out using 100 equally spaced

cells �h � 0�01�, CFL� 0�8 and the forward Euler explicit time-differencing procedure. In Figures 4

and 5 the numerical results obtained with the solver of Godunov are compared with the exact

Figure 4. Exact and computed density distributions: test problem (b1)
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solutions after 60 and 85 time steps for problems (b1) and (b2) respectively. The ®gures show the

improvement in the resolution as the order of reconstruction increases. The local numerical entropy

productions fpjg are reported in Figures 6 and 7 respectively for problems (b1) and (b2) after 580

(resp. 380) time steps with a ®xed t equal to 0�0025 (resp. 0�006) (in both cases CFL� 0�1); the exact

shock location is also illustrated in the ®gures. Note that the numerical entropy ¯ux in (35) is exactly

computed by means of the solver of Godunov (39). The ®gures show that spurious entropy

Figure 5. Exact and computed density distributions: test problem (b2)

Figure 6. Local entropy production distributions using Godunov ¯ux function: test problem (b1)
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productions reduce substantially with increasing order of reconstruction. In agreement with

Proposition 3 discussed in Section 3, we further observe that increasing the order of reconstruction

may occasionally lead to negative values of pi.

The local entropy productions corresponding to problem (b2) with the numerical entropy ¯ux

computed with the mass consistent entropy ¯ux (MCEF) formulae (43a) and (43b), for constant and

quadratic reconstructions respectively, are reported in Figures 8 and 9 and compared with those

Figure 7. Local entropy production distributions using Godunov ¯ux function: test problem (b2)

Figure 8. Local entropy production distributions using piecewise constant reconstruction: test problem (b2)
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obtained with (39). The comparison demonstrates that the proposals (43a) and (43b) agree both

qualitatively and quantitatively with (39) irrespective of the order of accuracy of the scheme. Finally,

in Figure 10 we analyse the effects of different numerical mass ¯ux functions for determining the

local numerical entropy production. The results compare well with those arising from the exact

Figure 9. Local entropy production distributions using piecewise quadratic reconstruction: test problem (b2)

Figure 10. Local entropy production distributions computed by MCEF formulae using various ¯ux functions: test problem (b2)
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procedure described previously, thus con®rming that one can exploit the homogeneity property of the

Euler equations to determine a consistent numerical entropy ¯ux.

7. CONCLUSIONS

This work has attempted to investigate in detail the relation between the numerical solution of

systems of conservation laws and the associated entropy evolution. Such evolution may provide

information on the physical relevance as well as on the quality of the numerical solution of

conservation laws, much in the same way as the so-called modi®ed (or model) equation furnishes a

useful technique for studying the behaviour of the discrete solutions.

While for the Euler equations of gas dynamics an entropy balance can be obtained, its discrete

counterpart cannot be identi®ed, mainly owing to the dif®culties in de®ning a numerical entropy ¯ux.

A class of periodic test problems which admit an analytical solution with zero local and global

entropy productions has been devised in order to correlate, at least at the global level, the entropy

time evolution with the entropy production, while avoiding the necessity of de®ning a numerical

entropy ¯ux. The availability of the exact entropy production rates serve the purpose of quantitative

assessment of the performances of different numerical methods.

The discussed numerical experiments suggest that in order to properly estimate the local entropy

evolution, it is mandatory to distinguish between the physical entropy production and the numerical

one and to locate the different contributions of the latter.

An original analysis of the effect of the reconstruction procedure of a ®nite-dimensional state

vector on the induced entropy balance has been carried out by means of variational calculus. The

analysis has led to the interesting conclusion that only the piecewise constant distribution of the

unknown variables ensures the maximum of the global thermodynamic entropy under the conditions

of mass, momentum and energy conservation.

Finally, the problem of de®ning a suitable numerical entropy ¯ux has been addressed in detail. A

consistent approximate expression for the entropy ¯ux, which does not require any linearization

procedure, while employing the same numerical mass ¯ux as the baseline scheme, has been devised.

The proposed ¯ux formulation is found to compare well against reference data.
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